Massively Parallel Self-Consistent-Field
Calculations

Jeffrey L. Tilson
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439

October 29, 1994

Abstract

The advent of supercomputers with many computational nodes each with its
own independent memory makes possible extremely fast computations. Our work,
as part of the U.S. High Performance Computing and Communications Program
(HPCCP), is focused on the development of electronic structure techniques for the
solution of Grand Challenge-size molecules containing hundreds of atoms. OQur ef-
forts have resulted in a fully scalable Direct-SCF program that is portable and effi-
cient. This code, named NWCHEM, is built around a distributed-data model. This
distributed data is managed by a software package called Global Arrays developed
within the HPCCP. We present performance results for Direct-SCF calculations of
interest to the consortium.

1 Introduction

Advances in theoretical chemistry over the past two decades have consistently improved
the ability of electronic structure calculations to accurately predict from first principles
the structure, spectra, and energetics of molecules and radicals. Such predictions permit
theoretical determinations of both thermochemistry and kinetics, fundamental informa-
tion for all chemical processes. As might be expected, more accurate and computationally
intensive methods are restricted to smaller molecular systems. But even for the simpler
ab initio electronic structure techniques, there is a frequently encountered limit to the size
of molecules that can be feasibly studied. Many practical problems in chemistry today
requires information on molecules too large for conventional electronic structure codes to
feasibly handle. The fate of chlorofluorocarbon alternates in the atmosphere, the proper-
ties of ligand substituents in polymerization catalysis, and the mechanism of enzymatic
destruction of toxins are all examples of current academic and industrial research areas
where important electronic structure applications are frequently too large to be feasibly
done.

Improvements in theoretical chemistry have frequently exploited advances in com-
puter hardware. At present, such an advance is occurring through the use of massively
parallel processors (MPP), high speed networds of hundreds to thousands of computers.
The economies of scale make such hardware the least expensive for assembling large scale
computational resources, precisely the kind of resources necessary for electronic struc-
ture applications for large molecular system such as discussed above. In recognition of
this direction in computer architecture, theoretical chemists and computer scientists at
Argonne National Laboratory, Pacific Northwest Laboratory, three major oil companies,
and two major chemical companies have formed a collaboration to adapt electronic struc-
ture methods to the MPP architecture for the purpose of applications to large molecular
systems. This collaboration has operated through the Department of Energy under the
auspices of the High Performance Computing and Communications Initiative. This pa-
per reports the results of one particular MPP adaptation, that of the self-consistent field
(SCF) [1, 2] electronic structure method. The results to date suggest that efficient coding
for MPP technology can qualitatively change the size of the molecule that can be treated
by the SCF method.

Efficient coding for the MPP architecture is not straightforward, because an MPP com-
puter is fundamentally different from a vector supercomputer. A typical MPP computer
consists of a collection of processors each with its own memory and each connected to a
high performance network. When designing algorithms for these computers, important is-
sues include avoiding replicated computation (computational efficiency), distributing data
structures so as to avoid wasting memory (data distribution), distributing computation
to processors so as to avoid idle time when one processor is busy and others are not (load
balance), and minimizing time spent sending and receiving messages (communication effi-
ciency). A metric that integrates these different criteria is scalability: the extent to which
an algorithm is able to solve larger problems as the number of processors is increased.

The complex architecture of MPP computers makes intuitive notions of performance
unreliable. Hence, a sound methodology when developing parallel algorithms is to begin
by examining algorithmic alternatives at a theoretical level. Only after scalability has been
established should effort be devoted to implementations on parallel computers. In this
paper, we apply this methodology to the SCF method. In addition to being important
in its own right, the SCF method is the starting point for many other more rigorous
methods. The SCF approach is also typical of other more sophisticated methods in its
use of large data structures and irregular data access patterns. Because of its importance,
others have developed various parallel MPP SCF codes (see [3] and references therein).
However, the code reported here is (in our opinion) the most scalable SCF code currently
available.

2 SCF Wavefunctions

The SCF wavefunction is constructed from an antisymmetrized product of single parti-
cle functions. This is the molecular orbital (MO) approximation. These MOs represent
the motion of an individual particle (electron) within the field of all the remaining elec-
trons and a static (clamped) configuration of nuclei. This wavefunction form and the

approximate Hamiltonian yield the Hartree-Fock energy and wavefunction.

Solution of the SCF problem has been shown useful in the determination of the nuclear
geometry. Typical values differ from experiment by 0.1-0.2 angs. This makes the SCF
equation a useful way to examine molecular geometries. Another quantity of interest
is the total energy and the orbital energies. The SCF gives reasonable total energies for
many molecules at their equilibrium geometry. It cannot, however, describe the important
structural correlations in molecules. This limitation, for example, prevents an accurate
description of bond breaking and forming. The individual orbital energies may be used
for a qualitative analysis of the electronic spectra. A very important aspect of the SCF
equations is as a starting point for more accurate higher order methods. These methods
almost exclusively correct the set MOs, making the SCF technique an integral part of
them.

2.1 Formalism

The total energy of a molecular system constructed from a set (¢;) of occupied orthonormal

MOs is

occupied 1 occupied
Energy = > hiDi; + 3 > gijdijn. (1)
] .5,k
The terms h;; and ¢, are one and two electron integrals, respectively and are independent
of the precise form of the wavefunction.

hy = [dnoDhe(1) = <a(Dlhled1) >

Gijrl = /dﬁdﬁ@(l)%(l)%%(2)@(2) =< ¢i(1)¢j(1)|é|¢k(2)¢l(2) >

h denotes the one-particle operator and rqy the interparticle distance. The form of the
wavefunction influences the structure of the one- and two-particle density matrices, D;;
and dj;p. Generally, the one-particle density matrix is simple to generate becoming a
delta function for the canonical SCF, D;; = ¢;;. The two-particle density matrix typically
requires a substantial amount of effort for more accurate, highly correlated electronic
structure methods (MCSCF, MRCI, full-CI, etc.) and can be a substantial computa-
tional process. This matrix, however, takes on a particularly simple structure for SCF
wavefunctions becoming sums of products of the one-particle densities. The simplicity of
the SCF two-particle density matrix shifts the computational burden onto the generation
of the integrals themselves.

The SCF total energy may be simplified by substituting into Eqn. 1 the nonzero values
for the D matrix.

occupied occupied

Energy = Z hn'—l-§ > gijj — Gijji (2)

]

This equation satisfies the requirements necessary for application of the variation principle.
In essence, the best MOs will result in the lowest (best) SCF energy. Hence, one can
find the best MOs by minimizing Eqn. 2 subject to orbital orthonormality and energy
constraints. The details of this derivation are widely available, and so only the results are
presented here. This minimization results in the total energy expression

1
Energy = 5 g (hii + Fi) (3)
where F}; is the MO Fock matrix.

occupied

Fy = hy+ Z Gijkk — Yikkj (4)
%

The F matrix is constructed from the MO integrals and so depends on the final solution,
requiring an iterative solution of the problem.

This energy has been solved exactly by using numerical techniques but only for very
small systems. This exact solution for the SCF wavefunction is called the Hartree-Fock
solution. Modern implementations of the SCF procedure parameterize the orbitals by
using a finite set of basis functions, x,, with expansion coeflicients, C. The basis functions
are linearly independent functions with a metric S, selected to simplify the calculation
of the two-particle integrals, ¢;;x.

-
I

ZXMCM (5)

I

Sw = /dTXMXU

The (closed-shell) MO density matrix when transformed to the atomic orbital (AO) basis
and with electron spin integrated out becomes

occupied

sz? = 2 Z chvj (6)
7=1

D = 20 (7)

Substitution of Eqns. 5 and 7 into Eqn. 4 results in the canonical AO Fock matrix.

1
40 A0 A0 A0
o = hwt 2 ; (ZgMVAp - gMW)) Dy, (8)
P
(9)

where the integrals are now over the AO functions.

4

The optimized MOs are determined by finding the optimal coefficients, C, that satisfy
Roothaans [1] nonorthogonal matrix eigenvalue problem

FC = SCe (10)

The eigenvalues, €, can be interpreted as the set of individual electron energies. In the
limit of a complete basis, the true Hartree-Fock limit is attained.
Equations 2-10 give us a prescription for solving the SCF problem.

1. Select a basis set, y,.

2. Select an initial coefficient matrix, C, and generate the current density matrix, D49,
3. Construct the matrix F using the current DAY and generating the AO integrals.
4. Solve the generalized eigenvalue problem of Eqn. 10 to obtain the new orbitals.

5. Check the new orbitals for self-consistency. If they have not converged, construct a
new D49 matrix, and repeat.

Once the converged orbitals are found, Eqn. 1 is solved, and the SCF calculation is

finished.

2.2 Algorithm

Efficient, scalable SCF software requires a detailed understanding of the SCF algorithm.
The principal operations in the SCF procedure are two primary steps that are iterated
until a self-consistent solution of Eqn. 10 is obtained. These steps are the generation of the
AOQ integrals to construct the AO Fock matrix and the diagonalization step to construct
the new coefficients.

The construction of the AO Fock matrix, even when the integrals are available, requires
many more operations than the subsequent diagonalization. The two-electron integrals
depend on four indices. These indices sample the space of AO basis functions; therefore,

the number of integrals grows as O(%), becoming huge for even small problems. As an
example, a small hydrocarbon might require 100 basis functions for an adequate represen-
tation of the electron field. This requirement results in O(10®) bytes of memory to store
all the integrals. This exorbitantly high storage forces the algorithm either to off-load
these integrals to disk or re-calculate then as needed. The integrals are constructed from
localized basis functions that introduces a considerable amount of sparsity. This sparsity
and the very high CPU/IO capabilities for most computers greatly favors a recomputa-
tion strategy. This type of SCF algorithm is denoted the direct-SCF method and is the
method selected for our work. The integrals can differ in computational effort by O(10%)
arithmetic operations. In a sequential environment, this is of little consequence, but is
an important issue in a parallel environment. The integrals are independent and may be
grouped (blocked) into nearly any convenient manner. Finally, the symmetry properties
of the two electron integrals and the AO F and D matrices results in a given integral,
I = g;‘}% contributing to at most six elements of the AO F matrix and requiring at most

5

six elements of the AO D matrix. A generic AO F construction algorithm is displayed in
Fig. 1.

The second primary step is the diagonalization. Once the Fock matrix is constructed
we must solve Eqn. 10 to obtain the optimum orbitals. The operation count for a diago-
nalization is typically O(N} ,;,) and is insignificant relative to the AO Fock construction
on a sequential computer. The diagonalization step takes on a much greater importance
in a parallel environment, often becoming the computational bottleneck.

3 Parallel SCF

In this section we describe our fully scalable SCF program named NWCHEM. A de-
scription of NWCHEM is available in a recent review [3] on parallel SCF programs and
algorithms. Here we summarize the important points of our scalable distributed-data
SCF algorithm.

A fully scalable, parallel direct-SCF algorithm must parallelize both the AO F con-
struction and diagonalization steps. For Grand Challenge-size problems this parallelism
must address not only greatly reducing the time for solution but also efficiently managing
the aggregate memory of the computer. For example, the number of integrals required
for a problem of size Ny,ss = 100 is on the order (’)(107). It each integral requires on av-
erage 1000 arithmetic operations, and the chosen CPU executes at 40 Mflops (millions of
floating-point instructions per second), the total time to generate one integral is 25usec.
The total time to compute the integrals becomes 250 sec. A calculation on Decane with
Niasis = 250 would require approximately 3.4 hours.

The parallel algorithm must also address the memory requirements of persistent matrix
data required for the calculation. The solution of a typical SCF problem requires the
storage of O(10) persistent matrices each of size (Npgsis X Npasis) elements. SCF solutions of
molecular problems useful particularly to industry require matrices of dimension Ny, s =
O(10* — 10*) double-precision words. A typical SCF calculation would then require local
memory capacity of nearly O(107) bytes.

3.1 Replicated Data Model

Several mature programs are now widely available on parallel architectures. The focus of
these initial efforts was to use parallel computers to greatly decrease the turnaround time
of a calculation. This was accomplished (most often) by using the direct-SCF technique
and parallelizing the integral generation step. The density and Fock matrix data are
replicated on all computational nodes. Batches of integrals are then collected into a
computational task that is allocated to a waiting node. These integrals are contracted
with the locally available D matrix to create a partial F matrix. This technique constructs
a F matrix efficiently. The algorithms, however, are not inherently scalable, since memory
storage is limited to that available on a single node. Furthermore, these algorithms use
a sequential diagonalization routine; hence the partial F matrices residing on each node
must be summed together onto one node. This one node then solves Eqn. 10 for the new
orbitals. These orbitals are then replicated back onto all nodes. This approach achieves
very good speedup on large numbers of nodes and is fairly straightforward to implement

in existing programs. This technique, unfortunately, shifts the computational bottleneck
from the highly parallel integral generation step to the diagonalization and is limited by
the amount of memory on one node.

3.2 Distributed-Data Model

Several models of scalable Fock matrix construction algorithms have been previously
analyzed [4]. The resulting program has been thoroughly discussed in [5]. We summarize
the important parallel details here.

To develop a fully scalable parallel SCF program requires efficiently distributing ma-
trix data throughout the aggregate memory of the parallel computer. This process elimi-
nates the memory restrictions of the replicated-data model algorithm. This distribution,
however, forces the program to communicate data (send messages) between nodes. Our
communications are performed with a new library of software functions that emulate a
shared-memory model using the primitive massage-passing capabilities of the MPP.

We first partition all AO matrix data, D, F. S, etc. into atomic blocks. These blocks are
submatrices with indices that span all basis functions for a given atomic center. These
blocks are then arbitrarily allocated to the different nodes on the computer. We also
generate integrals in atomic blocks (each of the four indices span all basis functions for
the given atom) and dynamically allocate blocks to a node with a shared counter. When
a node is instructed to generate an integral block, a check on sparsity is performed; then,
appropriate blocks of the D matrix are fetched and resulting F' matrix blocks are updated.

The simplicity of this algorithm is complicated by the varying data requirements for
different integral blocks. Our algorithm performs these communications with a library of
routines called Global Arrays. These Global Arrays support a lightweight one-sided com-
munications model, thereby greatly simplifying development of our scalable program [6, 7].

The scalable construction of the F matrix requires that the integrals be allocated dy-
namically and that nonlocal data requirements be satisfied without unduly synchronizing
the computational progress. These requirements are difficult to satisfy by using a tradi-
tional point-to-point communications scheme. The integral blocks very greatly in their
computational effort; and, equally important, for a given integral block the actual amount
of F and D data required depends upon the indices. Dynamic data caching increases the
difficulty of data management.

In developing software for a typical message-passing environment, data is transferred
to a remote node by explicitly having SEND and RECEIVE calls made by the participat-
ing nodes. A program written this way essentially blocks the progress of the calculation
until both nodes have satisfied their respective communication operation. This approach
places an effective synchronization step into the program. Asynchronous point-to-point
communications and double buffering can lessen the impact of such a scheme. This artifi-
cial synchronization is not related to the algorithm at all. For many kinds of calculations
a natural synchronization step exists and so is of no consequence.

The Global Arrays library eliminates this explicit synchronization. It allows the pro-
grammer to simply insert into a code a “request” for data. No companion “send” need be
made. This local request activates a mechanism that finds the data, interrupts the work
on the node holding the data, and commands the node to send the data. The interrupted

node then resumes with its work. If the data are local to the requesting node, no mes-
sages are sent. The overhead associated with this type of communications is higher than a
primitive message-passing function but is not inhibiting. The much greater integral load
balance obtained in this way greatly compensates for the slightly higher communication
cost. The Global Arrays are capable of several one-sided kinds of communications (read,
send, accumulate, etc.) and also support all traditional point-to-point communications.
The library is currently portable to several different parallel architectures. The simplicity
of using Global Arrays to write distributed-data applications does not obviate the need
for algorithm modeling. The applications engineer still must consider the memory and
network characteristics of the target computer for efficient implementation.

Once the F matrix is constructed, the optimum orbitals must be generated. We have
the capability to perform the generalized eigenvalue analysis in parallel. The scalability,
however, is much worse than construction of the F matrix because of the nature of the
diagonalization algorithm. [8, 9] This fact led us to investigate and include alternative
schemes as suggested by Shepard [10] . These techniques are all second-order convergence
techniques that try to find the minimum SCF energy within the space of parameters, C.
A recent paper [11] compares various techniques for direct-SCF calculations. Shepard and
Tilson are exploring the use of a simultaneous vector expansion method for overlapping
computational effort. These second-order techniques can greatly accelerate the time for
solution for some kinds of problems. They are strongly dependent, however, on the initial
guess of C and so do not always exhibit quadratic convergence. These importance of these
techniques is in their exposing highly scalable AO F constructions to the optimization
scheme.

4 Benchmarks

A set of molecular problems that represent the interests of our consortium has been
assembled. The problems include simple alkanes and transition-metal containing species.
The largest alkane problem, CyoHyy, represents the interaction of two decane molecules.
The three other presented benchmarks are

o (CsH5)Co(NO)(CHs) designated cobalt
o ((Cp)a(CHy))TiCly designated titanium
o 2,2 — di(tri fluoromethyl)biphenyl named biphenyl

We note that all total energies have been verified by independent calculations. The
speedup is a measure of the efficiency with which parallelism has been implemented. If a
program executes in time 7'(1) on a single node and in time T'(P) on P nodes the speed
up (SU) becomes

(1)
P = —=.
SU(P) T(P)
If the parallel program is perfectly parallelized, T(P) = @ and SU(P) becomes

simply P. A percent SU may be calculated as %SP) x 100.

8

Table 1 lists the time to construct the Fock matrix on the IBM SP1 and Intel Touch-
stone DELTA computers as a function of the number of nodes. Analytical performance
models predict that speedup will approach 90 —95 percent of ideal for very large problems.
This is observed in Table 1, where we observe a speedup of 98 percent for the biphenyl
benchmark on the DELTA computer.

The IBM SP1 results appear degraded relative to the DELTA. Detailed analysis of
the SP1 behavior on smaller problems (see butane results) indicates that the overhead
associated with creating the parallel environment markedly degrades performance on two
SP1 nodes. As the number of SP1 nodes increases, the observed speedup relative to
one node is actually greater than ideal. This situation suggests that favorable overlap of
operations occurs less frequently on two nodes. We find that the slope of the speedup
curves for calculations on the SP1 closely parallels the ideal line. The speedup for the
larger benchmarks is derived by assuming ideal speedup for the calculation with the fewest
number of nodes.

These benchmarks were also analyzed by using an available replicated data model
program on the CRAY C90 computer. This program is implemented as a shared-memory
model and is expected to be well vectorized. In this model the communications overhead
is very cheap, since relatively few messages are sent. We expect a speedup on the 16-node
C90 of close to 15. The time per AO F construction for these C90 tests are collected in
Table 2. We also find that generally a C90 node is observed to be 15 — 20 times faster
than a node on the Intel DELTA and 3 — 5 times faster than a node on the IBM SP1.
We find that calculations on the DELTA and SP1 can be made to run faster than on the
C90 by application of enough computational nodes.

The scalability of NWCHEM is found to be quite good for large molecular problems.
The somewhat lessened performance for the smaller benchmarks is not an issue, since
this MPP software is designed for the solution of massive problems that are not currently
possible. In particular, the SU begins to decrease when the number of processors (P)
approaches O(NZ_). Clearly, for large problems (N,zoms = 1000) high performance is
expected on all available MPPs. This high performance stems primarily from the use
of integral and data blocking and the asynchronous communications made possible by
Global Arrays.

The total times for solution are presented in Table 3. These calculations were per-
formed on the IBM SP1 computer. The wavefunctions were optimized with a second-order
convergence scheme, where the number of iterations are called macro iterations. Each
macro iteration corresponds to an SCF iteration and generally requires several AO F ma-
trix construction steps for the optimization. All energies are converged to 107! atomic
units (au). The large number of macro iterations for the titanium benchmark reflects the
expected convergence difficulties of a transition metal containing species.

5 Conclusion

The HPCCP consortium has developed a fully scalable and efficient direct-SCF program
called NWCHEM. We have validated the program and demonstrated high performance
on two currently available MPP computers. This work was accomplished by using a

few molecular benchmarks of interest to the consortium. Comparisons with a fully func-
tional replicated-data direct-SCF code on the CRAY C90 indicate that MPP performance
can surpass that of traditional vector supercomputers when using appropriately designed
scalable software.

This work has focused on efficient use of MPP CPUs and high-speed networking.
Future efforts must address utilization of all MPP resources, especially 1/O. In the direct-
SCF, the recomputation of integrals eliminates the potentially massive storage of integrals
while decreasing the total number of arithmetic operations. This fortuitous behavior is
not necessarily applicable to other electronic structure algorithms nor to algorithms in
general. Our consortium is now beginning to address the issues of parallel 1/O and its
applications to remote data storage.

The work of the consortium is also not limited to direct-SCF. Several parallel projects
are currently in place, including MP2, SCF gradients, and MCSCF. These techniques
allows us to fully optimize SCF geometries and determine corrections to the SCF wave-
function.

Acknowledgments

This work was performed under the auspices of the High Performance Computing and
Communications Program of the Office of Scientific Computing, U.S. Department of En-
ergy under contract W-31-109-Eng-38 with the University of Chicago which operates the
Argonne National Laboratory.

This research was performed in part using the Intel Touchstone Delta System operated
by Caltech on behalf of the Concurrent Supercomputing Consortium. Access to this
facility was provided by Argonne National Laboratory.

The author gratefully acknowledges use of the Argonne High-Performance Computing
Research Facility. The HPCRF is funded principally by the U.S. Department of Energy
Office of Scientific Computing.

The author thanks A. . Wagner and M. Minkoff for helpful discussions and assistance.

References

[1] Roothaan, C., Reviews of Modern Physics, 23, 69, 1951.
mlof, J., Faegri, K., and Korsell, K., J. Comp. Chem, 3, 385, :
2] Almlof, J., Faegri, K d K 1, K., J. C| Ch 3, 385, 1982

[3] Harrison, R. J., and Shepard, R., Annual Review of Physical Chemistry, to appear
1994.

[4] Foster, 1., T., Tilson, J., L., Shepard, R. L., Wagner, A. F., Harrison, R. J.,
Kendall, R. A., Littlefield, R. L. submitted J. Comp. Chem., 1994.

[5] Harrison, R. J., Guest, M. F., Kendall, R. A., Bernholdt, D. E., Wong, A. T.,
Stave, M., Anchell, J., Hess, A. C., Littlefield, R. L., Fann, G. L., Nieplocha, J.,
Thomas, G. S., Elwood, D., Tilson, J., Shepard, R. L., Wagner, A. F., Foster, 1., T.,
Lusk, E., and Stevens, R. submitted J. Comp. Chem., 1994.

10

[6] Harrison, R., Theo. Chim. Acta., 84, 363, 1993.

[7] Nieplocha, J., Harrison, R., J., Littlefield, R., J. For submission to Supercomputing
1994, 1994

[8] Littlefield, R., and Maschhoff, K., Theor. Chim. Acta, 84, 457, 1993.

[9] Kendall, R., A., Harrison, R., J., Littlefield, R., J., Guest, M., F. Reviews in Com-
putational Chemistry, VCH Publishers, Inc., New York, 1994.

[10] Shepard, R., Theor. Chim. Acta, 84, 343, 1993.

[11] Wong, A. T. and Harrison, R., J. submitted J. Comp. Chem.,1994.

11

A0 Fock Construction

DO: =1, N
DO j =1, i
IF (¢,j pair survive screening) THEN
DO k=1, 1

IF (k.EQ.z) [he =
IF (k.NE.:) [he = &k
DO/ =1, [k
IF (k,l pair survive screening) THEN
EVALUATE [= Gijkl
Fy;= Fy+ Dyl
Fu= Fu+ Dl
FZ' = FZ - lDﬂ]

2

FZ' = FZ - %D]k]

FJ‘ = Fﬂ - %Dzk]

F]k= ij— %Dzl]
ENDDO

ENDDO
ENDIF
ENDDO
ENDDO

Figure 1: Basic logic for Fock matrix construction

12

Table 1: Speedup characteristics of NWCHEM on the Intel Touchstone Delta and IBM
SP1 computers. All times are for one AO Fock matrix construction. Speedup times for a

given molecular species are relative to the measure timed on the fewest number of nodes.

ND = Not Done

DELTA IBM SP1

Molecule | NBF | Time per | Number of | Speed- | Time per | Number of | Speed-
AO F Nodes up AO F Nodes up

C4Hyo 110 | 1140.51 1 1 218.43 1 1
110 580.63 2 1.96 134.77 2 1.62

110 293.65 4 3.88 63.2 4 3.45

110 74.08 16 | 15.39 15.13 16 | 14.44

110 37.31 32 | 30.57 ND ND ND

CooHyy 520 | 1287.79 32 32| 1060.39 8 8
520 860.90 48 47.8 539.25 16 15.7

520 647.73 64 63.6 272.04 32 31.2

520 333.11 128 | 123.7 184.19 48 46.1

520 188.51 256 | 218.6 141.11 64 60.1

cobalt 114 891.93 2 2 330.18 1 1
114 453.05 4 3.9 247.75 2 1.33

114 233.16 8 7.6 106.98 4 3.1

114 121.47 16 14.7 50.33 8 6.6

114 63.84 32 27.9 ND ND ND

biphenyl | 324 | 2291.61 16 16 846.48 8 8
324 | 1148.13 32 31.9 429.33 16 15.8

324 575.86 64 63.7 260.85 32 | 25.96

324 290.59 128 | 126.2 131.73 64 51.4

titanium | 147 | 3008.09 4 4 713.26 4 4
147 773.48 16 15.6 364.51 8 7.8

147 400.13 32 30.1 186.64 16 15.3

147 212.82 64 56.5 95.69 32 29.8

147 119.3 128 | 100.8 50.55 64 56.4

13

Table 2: Time for an AO F matrix construction on the Cray C90 using a commonly

available ab-initio package

Molecule | Number of | Time Per

Nodes AO F
C4Hyo 1 78.24
C4Hyo 4 19.59
CooHyy 1 2490.23
CooHyy 2 1204.26
cobalt 1 64.36
titanium 1 382.47
biphenyl 8 474.5

Table 3: Time to solution. Initial estimates from atomic densities. Energy converged to
10~ %aun

Time To Solution IBM SP1
Molecular | Number Number | Number | Number | Total Time
Species Atoms | Basis Ftns Nodes | Iterations seconds
CH,4 5 35 16 4 9.80
C4Hqg 14 110 16 4 328.35
CgHs 26 210 32 5 1342.10
titanium 24 174 128 14 3761.35
biphenyl 28 324 64 7 4539.57
biphenyl 28 324 128 7 2382.35

14

